1 Scaling

In \mathbb{R}^{2} we can scale a point, $\vec{p}_{1}=(x, y)$, to a point, $\vec{p}_{2}=\left(x^{\prime}, y^{\prime}\right)$, by scale factors, s_{x} and s_{y}, as,

$$
\begin{align*}
& x^{\prime}=s_{x} x \tag{1}\\
& y^{\prime}=s_{y} y \tag{2}
\end{align*}
$$

This transformation can be written in matrix form as,

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
s_{x} & 0 \tag{3}\\
0 & s_{y}
\end{array}\right)\binom{x}{y}
$$

In \mathbb{R}^{3+1} this transformation matrix can be written using homogeneous coordinates as,

$$
\mathbf{S}=\left(\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \tag{4}\\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2 Translation

In \mathbb{R}^{2} we can translate a point, $\vec{p}_{1}=(x, y)$, to a point, $\vec{p}_{2}=\left(x^{\prime}, y^{\prime}\right)$, by,

$$
\begin{align*}
x^{\prime} & =x+t_{x} \tag{5}\\
y^{\prime} & =y+t_{y} \tag{6}
\end{align*}
$$

Translation is an affine transformation,

$$
\begin{equation*}
\vec{x} \mapsto \mathbf{A} \vec{x}+\mathbf{b} \tag{7}
\end{equation*}
$$

We can introduce homogeneous coordinates to make the translation operator linear. Equations 5 and 6 can then be combined in matrix form as,

$$
\left(\begin{array}{c}
x^{\prime} \tag{8}\\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

In \mathbb{R}^{3+1} this operator becomes,

$$
\mathbf{T}=\left(\begin{array}{lllc}
1 & 0 & 0 & t_{x} \tag{9}\\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

3 Rotation

Suppose we have a point, $\vec{p}_{1}=(x, y)$, that we want to rotate by an angle, θ_{2}, to the point, $\vec{p}_{2}=\left(x^{\prime}, y^{\prime}\right)$. The point, \vec{p}_{1}, can be represented by the polar coordinates $\left(r, \theta_{1}\right)$, and we have,

$$
\begin{align*}
& r=\sqrt{x^{2}+y^{2}} \tag{10}\\
& x=r \cos \theta_{1} \tag{11}\\
& y=r \sin \theta_{1} \tag{12}
\end{align*}
$$

Similarly, \vec{p}_{2} can be written in polar coordinate form as $\left(r, \theta_{1}+\theta_{2}\right)$, which yields,

$$
\begin{align*}
x^{\prime} & =r \cos \left(\theta_{1}+\theta_{2}\right) \tag{13}\\
& =r \cos \theta_{1} \cos \theta_{2}-r \sin \theta_{1} \sin \theta_{2} \tag{14}\\
& =x \cos \theta_{2}-y \sin \theta_{2} \tag{15}\\
y^{\prime} & =r \sin \left(\theta_{1}+\theta_{2}\right) \tag{16}\\
& =r \cos \theta_{1} \sin \theta_{2}+r \sin \theta_{1} \cos \theta_{2} \tag{17}\\
& =x \sin \theta_{2}+y \cos \theta_{2} \tag{18}
\end{align*}
$$

using the angle sum identities in equations 14 and 17. This transformation can be written in matrix form as,

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos \theta_{2} & -\sin \theta_{2} \tag{19}\\
\sin \theta_{2} & \cos \theta_{2}
\end{array}\right)\binom{x}{y}
$$

In \mathbb{R}^{3+1} these linear operators can be written using homogeneous coordinates as,

$$
\begin{align*}
\mathbf{R}_{x} & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta_{x} & -\sin \theta_{x} & 0 \\
0 & \sin \theta_{x} & \cos \theta_{x} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \tag{20}\\
\mathbf{R}_{y} & =\left(\begin{array}{cccc}
\cos \theta_{y} & 0 & \sin \theta_{y} & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta_{y} & 0 & \cos \theta_{y} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \tag{21}\\
\mathbf{R}_{z} & =\left(\begin{array}{cccc}
\cos \theta_{z} & -\sin \theta_{z} & 0 & 0 \\
\sin \theta_{z} & \cos \theta_{z} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \tag{22}
\end{align*}
$$

